Continuing the Baseline: Public Reception, Understanding, and Responses to Severe Weather Forecasts and Warnings in the Contiguous United States

Reference Report

Carol Silva, Joseph Ripberger, Hank Jenkins-Smith, Makenzie Kroca, Sean Ernst, and Andrew Bell

Center for Risk and Crisis Management
University of Oklahoma

August 28, 2019

This report describes the results of an annual nationwide survey on severe weather in the United States. The Severe Weather and Society Survey (WX) was designed and administered by the Center for Risk and Crisis Management (CRCM) at the University of Oklahoma. It is the third survey in the annual series (see Silva et al. 2017 and Silva et al. 2018 for information on WX17 and WX18). WX19 was fielded June 24 – July 6, 2019 using an online questionnaire that was completed by 3,006 U.S. adults (age 18+) that were recruited from an Internet panel that matches the characteristics of the U.S. population as estimated in the U.S. Census. Following WX17 and WX18, which were designed to establish baseline measures of the extent to which U.S. adults receive, understand, and respond to severe weather forecasts and warnings, WX19 was designed to continue and, in some cases, refine the measurement of these concepts. Additionally, WX19 measured public trust in the National Weather Service (NWS), extreme weather and climate risk perceptions, risk literacy, interpretations of probabilistic language, and extreme weather preparedness. This report presents an overview of methodology of the survey data collection, data weighting, and a reproduction of the survey instrument with weighted means and frequencies for the questions that elicited numeric responses.

The University of Oklahoma provided funding for all data collection. NOAA’s Office of Weather and Air Quality through the U.S. Weather Research Program provided funding for survey design and data analysis.
1. INTRODUCTION

1.1. Background
The mission of the National Weather Service (NWS) is to provide weather, water, and climate data, forecasts, and warnings for the protection of life and property and enhancement of the national economy. Currently, the NWS uses warning verification statistics (such as probability of detection, false alarm ratio, and warning lead time) to measure the extent to which they are achieving this mission. This measurement strategy assumes that increasing the accuracy and timeliness of forecasts and warnings will generate increases in the protection of life and property. While necessary, improvements to forecasts and warnings are not always sufficient to generate this outcome. Rather, there are many social conditions that must be met. For example, members of the public must receive, understand, and respond to the forecasts and warnings that the NWS issues. If one or more of these conditions are not met, improvements to forecast and warning technology will not necessarily advance the mission of the NWS. As such, we recommend that the NWS consider these and other social conditions when measuring performance before, during, and after policy changes. Accomplishing this task will require at least three things:

1. Valid and reliable indicators of social conditions (such as forecast and warning reception, understanding, and response);
2. Baseline measures of these indicators under the current forecast and warning system;
3. A protocol that will allow the NWS to track these indicators over time and space so that program managers can empirically detect changes that occur as, when, and where the NWS implements new policies.

The Severe Weather and Society Survey (WX Survey, for short), an annual nationwide survey on severe weather in the United States, was designed with these tasks in mind. WX17 was the first national survey in the WX series (see Silva et al., 2017 for more information). Pursuant to item two (above), WX17 was designed to establish baseline measures of the extent to which U.S. adults receive, understand, and respond to severe weather forecasts and warnings under the current watch, warning, and advisory (WWA) system. Pursuant to item three (above), WX18 and WX19 were designed to continue and, in some cases, refine the measurement of severe weather forecast and warning reception, comprehension, and response over time and space. Additionally, WX19 measured public trust in the National Weather Service (NWS), extreme weather and climate risk perceptions, risk literacy, interpretations of probabilistic language, and extreme weather preparedness.

Select results from this research are highlighted in the following conference posters, presentations, and papers (available upon request):

- Krocač, M., and J. Ripberger, 2017: Establishing a Baseline: What We Know about Tornado Warning Reception, Comprehension and Response. [LINK]
- Allan, J., et al., 2017: Tornado Risk Literacy: Beliefs, Biases, and Vulnerability. [LINK]
Krocak, M., et al., 2018: A Difference in the Details: Assessing the Impact of Region on Tornado Threat Awareness and Knowledge. [LINK]

Ripberger, J., et al., 2018: Baseline Measures of Reception, Comprehension, and Response to Severe Weather Forecasts and Warnings. [LINK]

Ripberger, J., et al., 2019: Tornado Warning Reception, Comprehension, and Response across County Warning Areas in United States. [LINK]

Wehde, W., et al., 2019: Is There Anybody Out There? Communication of Natural Hazard Warnings at Home and Away. [LINK]

Krocak et al. 2019: The Impact of Hours of Advance Notice on Protective Action in Response to Tornadoes [LINK]

Ripberger, J., et al., 2019: Exploring Community Differences in Tornado Warning Reception, Comprehension, and Response in Communities Across the United States. [AVAILABLE ON REQUEST]

Wehde, W., et al., 2019: Public Willingness to Pay for Probabilistic Weather Forecasts. [AVAILABLE ON REQUEST]

This report presents an overview of the WX19 sampling and weighting methodology and a reproduction of the survey instrument with weighted frequencies (or means) for the questions that elicited numeric responses. Before that, we provide a brief overview of survey research via the Internet. See Silva et al. (2017) and Silva et al. (2018) for information on previous surveys.

1.2. Survey Research via the Internet

Technological developments and telecommunication trends, such as the declining number of land-line phones, the increasing use of cellular phones, and the continuing expansion of high speed Internet services, have made probabilistic (often referred to as “random”) sampling of the U.S. national population for the administration of lengthy surveys on complex issues infeasible for several reasons:

- The total universe of households without phone service of any kind is unknown;
- Wired phone lines are no longer maintained in a sufficient fraction of U.S. households to represent the national population, and members of households that do have land-line phone services differ systematically from households without wired phones;
- The number of households with wired phones that are exclusively used for purposes other than routine phone calls, such as home alarms or medical alert services, is unknown;
• The numbers of individuals and households having both a wired phone and a cell phone or those having more than one cell phone are unknown;
• The numbers of households and individuals having access to Internet services suitable for taking web-based surveys is unknown;
• The numbers of individuals who have access to Internet services from their workplace is unknown, and of those, the number of individuals who can take surveys while at work is unknown;
• Cell phones may be unsuitable for lengthy surveys, especially for respondents who are otherwise occupied, and surveys conducted using cell phones may incur costs to prospective respondents that might ultimately discourage survey participation or reduce the quality of data collected; and
• Face-to-face interviews or printed postal surveys of the U.S. public require long collection periods, often with low response rates, and are prohibitively expensive for many research projects.

Increasingly, academic quality surveys of the U.S. public on complex subjects, such as severe weather, are being conducted via the Internet. The factors listed above present special challenges for probabilistic sampling due to incomplete information about rapidly evolving telecommunication patterns, Internet accessibility, and the demographic composition of those who have suitable Internet access.

With increasing Internet access, the demographics of the online population are becoming more representative of the U.S. population, but samples recruited to participate in Internet surveys cannot be truly random samples of the U.S. public. All surveys, regardless of collection methods, include an element of self-selection bias because even if a perfectly random sample could be constructed, the final decision to participate must be made voluntarily by each respondent, and thus some degree of self-selection is unavoidable. This means that, even when derived from a theoretically perfect random sample, the demographic characteristics of survey respondents may not perfectly reflect U.S. population parameters. Non-probabilistic samples, such as those used to administer surveys of the public via the Internet, involve greater degrees of self-selection because participants first voluntarily agree to enter a pool or stream of U.S. residents willing to take surveys online, and then each member of that group must decide whether to participate in a survey opportunity. This requires the administration of Internet surveys that are as demographically representative as possible, and it warrants caution in presenting findings as statistically representative of views of the entire adult U.S. population.

2. SAMPLING, DEMOGRAPHICS, AND DATA COLLECTION

The sample of survey participants for WX19 was provided by Qualtrics, a research and marketing company that maintains a diverse panel of Internet users in the U.S. who have agreed to participate in online surveys. Qualtrics recruits these panelists in multiple ways, including advertisements on web pages, social media, and contact with various online communities. They also utilize affiliate programs and partnerships to recruit participants.
For WX9, Qualtrics used a dynamic sampling process to identify eligible panelists (U.S. adults who live in the contiguous U.S.) and invite them to participate in the survey. To begin, invitations were sent to an anonymous group of panelists that match the demographic characteristics of the target population. As the first group of panelists completed the survey, Qualtrics sent additional invitations to panelists based on demographic targets. If a given group was underrepresented (relative to U.S. Census estimates), they sent more invitations to that group; if the group was overrepresented, they sent fewer invitations. This resulted in a diverse sample of survey participants that is generally representative of the U.S. adult population. Table 2.1 demonstrates this representativeness by comparing key national and regional population estimates from the U.S. Census to the demographic characteristics of WX9 respondents.

Table 2.1: Demographic Representativeness of WX9 Respondents

<table>
<thead>
<tr>
<th></th>
<th>U.S. Adult Population* (%)</th>
<th>Participants (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>51.3</td>
<td>51.3</td>
</tr>
<tr>
<td>Male</td>
<td>48.7</td>
<td>48.7</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 to 24</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>25 to 34</td>
<td>18.0</td>
<td>18.2</td>
</tr>
<tr>
<td>35 to 44</td>
<td>16.3</td>
<td>16.3</td>
</tr>
<tr>
<td>45 to 54</td>
<td>16.4</td>
<td>16.3</td>
</tr>
<tr>
<td>55 to 64</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>65 and up</td>
<td>20.6</td>
<td>20.5</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>16.3</td>
<td>16.4</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>83.7</td>
<td>83.6</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>77.9</td>
<td>77.9</td>
</tr>
<tr>
<td>Black or African American</td>
<td>13.0</td>
<td>12.8</td>
</tr>
<tr>
<td>Asian</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Other Race</td>
<td>3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>NWS Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern</td>
<td>31.6</td>
<td>32.0</td>
</tr>
<tr>
<td>Southern</td>
<td>27.1</td>
<td>26.5</td>
</tr>
<tr>
<td>Central</td>
<td>20.7</td>
<td>20.9</td>
</tr>
<tr>
<td>Western</td>
<td>20.6</td>
<td>20.6</td>
</tr>
</tbody>
</table>

*Population estimates were obtained from the U.S. Census Annual Estimates of the Resident Population by Sex, Age, Race, and Hispanic Origin for the United States and States: April 1, 2010 to July 1, 2018 (PEPASR6H).

Figure 2.1 shows the geographic distribution of WX9 respondents by zip code centroid. While the proportions of participants in each region generally match Census estimates, it is important to note the clusters of participants in urban areas. This pattern follows the geographic distribution of the U.S. population, but there are relatively few respondents in rural areas, which may complicate
some inferences about that segment of the population. Such inferences would likely require oversampling that portion of the population in a subsequent study.

Figure 2.1: Geographic Distribution of WX19 Respondents

To ensure the protection of survey respondents, the WX19 survey questions and the survey protocol were approved by the Institutional Review Board of the University of Oklahoma. While Qualtrics was responsible for the recruitment of respondents, the University of Oklahoma (CRCM) implemented the survey and manages the data. The survey instrument was programmed to allow the survey to be self-administered at the preferred time and pace of each respondent within defined time constraints to maintain flexibility as well as data quality. Average (median) completion time was 23 minutes. Each respondent who completed the survey received an incentive (survey points) from Qualtrics. Decisions to participate were entirely voluntary.

3. DATA WEIGHTING

To enhance the demographic representativeness of the sample and generalizability of the results, WX19 employed the data weighting methodology that is described in this section. Weighting survey data to selected demographic characteristics of the target population (also known as sample balancing or post-stratification) provides three key analytical benefits:

1. Generalizability of findings is strengthened to the degree that responses from survey participants are adjusted to mirror the demographic characteristics of the U.S. adult population at the time the survey is administered;
2. Comparability to other studies is strengthened because data weighting minimizes the demographic differences that may arise between this and other samples that match the demographic characteristics of the U.S. adult population;

3. Reliability of trends over time is strengthened because survey data are adjusted to represent continually evolving demographics of the U.S. population, such as the growth of ethnic and racial minority groups. This is especially important for understanding measures that may be influenced by shifts in national demographic characteristics.

To access these benefits, CRCM calculated a weight for each WX19 respondent that accounts for imbalances in gender, age, race, and Hispanic ethnicity within each of the four NWS regions that divide the contiguous U.S. (CONUS)—the Eastern, Southern, Central, and Western regions. The weighting process involved three steps:

1. Calculate the proportion of the U.S. population that shares the demographic characteristics of each respondent (the population proportion);
2. Calculate the proportion of the sample that shares the demographic characteristics of each respondent (the sample proportion);
3. Divide the population proportion by the sample proportion to calculate a weight for each respondent.

This process resulted in a weight factor that indicates how much each case will “count” in weighted analyses. A weight factor of one means that responses from a specified participant are used without adjustment. A weight factor greater than one means that a participant with a given set of demographic attributes is underrepresented in the survey sample (relative to the national population), and responses from that participant receive greater statistical emphasis than responses from survey participants who are represented in direct proportion to the adult population. Conversely, a weight factor smaller than one means that a respondent having a given set of demographic attributes is overrepresented in the survey sample (relative to the adult population), and responses from that participant receive less emphasis than fellow respondents who are represented in direct proportion to the adult population. Weight factors were calculated within NWS regions to facilitate generalization within and comparison across the regions.

4. SURVEY INSTRUMENT, WEIGHTED RESPONSE FREQUENCIES, AND CENTRAL TENDENCIES

This section provides a reproduction of the WX19 survey instrument with weighted frequencies or central tendencies for the questions that elicited numeric responses [shown in blue].

You are invited to participate in the Severe Weather and Society study. This study seeks to assess how U.S. residents receive, understand, and respond to weather forecasts and warnings. You were selected as a possible participant because you volunteered to participate in online surveys through Qualtrics or one of its partners. If you agree to participate, you will complete this online survey.

There are no risks or benefits.
If you participate, you will be compensated according to your agreement with your online survey provider. Your participation is voluntary and your responses will be de-identified before they are shared for research purposes or published.

Even if you choose to participate now, you may stop participating at any time and for any reason. Your data may be used in future research studies, unless you contact me to withdraw your data.

Data are collected via an online survey system that has its own privacy and security policies for keeping your information confidential. The University of Oklahoma cannot provide assurances as to how this online survey system is permitted to use the data you provide.

If you have questions about this research, please contact the Center for Risk and Crisis Management at the University of Oklahoma, at 405-325-1720 or at clsilva@ou.edu.

You can also contact the University of Oklahoma - Norman Campus Institutional Review Board at 405-325-8110 or irb@ou.edu with questions, concerns or complaints about your rights as a research participant, or if you don’t want to talk to the researcher.

By answering the survey questions, I agree to participate in this research. Please print this page for your records. This research has been approved by the University of Oklahoma, Norman Campus IRB.

IRB Number: 9418
Approval date: 06/13/2018

------------------------End Web pg-----------------------

age: How old are you? [verbatim; require numeric; IF < 18 SKIP TO END OF SURVEY] [Median = 47]

gend: Are you male or female?
0 - Female [51.33%]
1 - Male [48.67%]

hisp: Do you consider yourself to be Hispanic, Latino, or Spanish or to have Hispanic, Latino, or Spanish origins?
0 - No [83.63%]
1 - Yes [16.37%]

race: Which of the following best describes your race?
1 - White [77.91%]
2 - Black or African American [12.84%]
3 - American Indian or Alaska Native [0.93%]
4 - Asian [5.92%]
5 - Native Hawaiian or Pacific Islander [1.23%]
6 - Two or more races [<0.01%]
7 - Some other race (please specify) [1.16%]
race_spec: [VERBATIM]

------------------------End Web pg-----------------------

state: Please select the state or district where your primary residence is located.

zip: What is the five digit zip code at your residence? [VERATIM; REQUIRE 5-DIGIT NUMERIC]

------------------------End Web pg-----------------------

Approximately how long have you lived at your current address or any other address within the same zip code area?
long_years: [VERBATIM; REQUIRE NUMERIC] [Median = 10] years and long_months: [VERBATIM, REQUIRE NUMERIC <12] [Median = 4] months.

[SHOW IF long_years < 5]
last_state: Using the dropdown list, please select the state or district where your previous residence was located.

now: Please indicate which of the following statements applies to you.
0 - I am completing this survey from my current primary residence. [79.86%]
1 - I am completing this survey from a location that is not my current primary residence. [20.14%]

rural: Which of the following categories best describes the location of your current primary residence?
1 - Urban lot in a densely populated area [26.57%]
2 - Suburban lot in a neighborhood that is near a densely populated area [57.76%]
3 - Rural lot in a sparsely populated area [15.67%]

home: Which of the following categories best describes the nature of your current primary residence?
1 - Stand-alone (detached) permanent structure such as a house [65.18%]
2 - Condominium, town-house, or duplex that is attached to another structure [12.55%]
3 - Apartment or dormitory room that is part of a larger residential complex [17.38%]
4 - Mobile home (whether placed on a permanent foundation or not) [4.13%]
5 - Boat, boathouse, ship, dock, or other floating structure [0.09%]
6 - Other type (please specify) [0.67%]

home_spec: [VERBATIM]

rent: Which of the following categories best describes your living arrangements at your current primary residence?
1 - Live with family or friends and do not pay rent [17.40%]
2 - Pay to rent or lease your primary residence (includes college or other dormitory rooms) [28.68%]
3 - Own your primary residence (includes making mortgage payments or outright ownership with no mortgage payments) [53.92%]

adults: Including yourself, how many ADULTS AGE 18 AND OLDER live in your current primary residence? [VERBATIM; REQUIRE NON-ZERO NUMERIC RESPONSE] adults [Median = 2]

children: How many CHILDREN AGE 17 AND YOUNGER live in your current primary residence? [VERBATIM; REQUIRE NUMERIC RESPONSE] children [Median = 0]

We have some basic questions about the weather. How much do you agree or disagree with the following statements? [RANDOM ORDER]

follow: I follow the weather very closely.
1 - Strongly disagree [2.92%]
2 - Disagree [6.69%]
3 - Neither disagree nor agree [16.41%]
4 - Agree [48.55%]
5 - Strongly agree [25.42%]
plan_around: I plan my daily routine around the weather.
1 - Strongly disagree [6.08%]
2 – Disagree [15.44%]
3 - Neither disagree nor agree [27.73%]
4 - Agree [39.60%]
5 - Strongly agree [11.14%]

und_weather: I don’t understand what causes extreme weather events like thunderstorms, tornadoes, and hurricanes.
1 - Strongly disagree [16.68%]
2 - Disagree [38.39%]
3 - Neither disagree nor agree [23.91%]
4 - Agree [15.76%]
5 - Strongly agree [5.27%]

How frequently do you get information about the weather from each of the following sources? [RANDOM ORDER IN TABLE]

wthr_info_paper: Newspapers
1 – Never [52.02%]
2 - Less than once per week [14.03%]
3 - About once per week [8.57%]
4 - Several times per week [7.98%]
5 - About once a day [14.20%]
6 - Several times a day [3.20%]

wthr_info_web: Non-government Internet websites (such as weather.com)
1 – Never [25.90%]
2 - Less than once per week [15.29%]
3 - About once per week [12.46%]
4 - Several times per week [15.60%]
5 - About once a day [18.93%]
6 - Several times a day [11.82%]

wthr_info_govweb: Government Internet websites (such as noaa.gov)
1 – Never [54.74%]
2 - Less than once per week [18.73%]
3 - About once per week [7.26%]
4 - Several times per week [8.12%]
5 - About once a day [6.22%]
6 - Several times a day [4.94%]

wthr_info_loctv: Local TV (television) news
1 – Never [13.54%]
2 - Less than once per week [10.97%]
3 - About once per week [9.61%]
4 - Several times per week [15.54%]
5 - About once a day [25.38%]
6 - Several times a day [24.96%]

wthr_info_cabtv: Cable TV (television) news (such as The Weather Channel)
1 – Never [26.25%]
2 - Less than once per week [17.47%]
3 - About once per week [13.15%]
<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Never</td>
<td>27.53%</td>
</tr>
<tr>
<td>2 - Less than once per week</td>
<td>17.75%</td>
</tr>
<tr>
<td>3 - About once per week</td>
<td>11.85%</td>
</tr>
<tr>
<td>4 - Several times per week</td>
<td>16.03%</td>
</tr>
<tr>
<td>5 - About once a day</td>
<td>16.70%</td>
</tr>
<tr>
<td>6 - Several times a day</td>
<td>10.13%</td>
</tr>
</tbody>
</table>

wthr_info_fam: Family, friends or colleagues

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Never</td>
<td>22.42%</td>
</tr>
<tr>
<td>2 - Less than once per week</td>
<td>23.11%</td>
</tr>
<tr>
<td>3 - About once per week</td>
<td>16.00%</td>
</tr>
<tr>
<td>4 - Several times per week</td>
<td>17.29%</td>
</tr>
<tr>
<td>5 - About once a day</td>
<td>13.98%</td>
</tr>
<tr>
<td>6 - Several times a day</td>
<td>7.21%</td>
</tr>
</tbody>
</table>

wthr_info_soc: Social Media, such as Facebook and Twitter

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Never</td>
<td>48.37%</td>
</tr>
<tr>
<td>2 - Less than once per week</td>
<td>12.58%</td>
</tr>
<tr>
<td>3 - About once per week</td>
<td>8.88%</td>
</tr>
<tr>
<td>4 - Several times per week</td>
<td>9.93%</td>
</tr>
<tr>
<td>5 - About once a day</td>
<td>10.13%</td>
</tr>
<tr>
<td>6 - Several times a day</td>
<td>10.12%</td>
</tr>
</tbody>
</table>

wthr_info_phone: Cell phone applications or automated text messages

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Never</td>
<td>25.82%</td>
</tr>
<tr>
<td>2 - Less than once per week</td>
<td>11.64%</td>
</tr>
<tr>
<td>3 - About once per week</td>
<td>9.39%</td>
</tr>
<tr>
<td>4 - Several times per week</td>
<td>13.82%</td>
</tr>
<tr>
<td>5 - About once a day</td>
<td>20.70%</td>
</tr>
<tr>
<td>6 - Several times a day</td>
<td>18.63%</td>
</tr>
</tbody>
</table>

Thinking about all four seasons (winter, summer, spring, and fall), how do you rate the risk of the following extreme weather events to you and the people in your area? [RANDOM ORDER IN TABLE]

risk_wind: Extreme high winds

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - No risk</td>
<td>6.16%</td>
</tr>
<tr>
<td>2 - Low risk</td>
<td>16.39%</td>
</tr>
<tr>
<td>3 - Moderate</td>
<td>39.71%</td>
</tr>
<tr>
<td>4 - High risk</td>
<td>26.55%</td>
</tr>
<tr>
<td>5 - Extreme</td>
<td>11.18%</td>
</tr>
</tbody>
</table>

risk_rain: Extreme rain storms

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - No risk</td>
<td>6.74%</td>
</tr>
<tr>
<td>2 - Low risk</td>
<td>15.02%</td>
</tr>
<tr>
<td>3 - Moderate</td>
<td>37.93%</td>
</tr>
<tr>
<td>4 - High risk</td>
<td>27.13%</td>
</tr>
<tr>
<td>5 - Extreme</td>
<td>13.17%</td>
</tr>
</tbody>
</table>

risk_heat: Extreme heat waves
1 - No risk [5.18%]
2 - Low risk [15.04%]
3 - Moderate risk [35.72%]
4 - High risk [26.31%]
5 - Extreme risk [17.76%]

risk_drought: Droughts
1 - No risk [14.51%]
2 - Low risk [26.19%]
3 - Moderate risk [30.71%]
4 - High risk [16.88%]
5 - Extreme risk [11.71%]

risk_cold: Extreme cold temperatures
1 - No risk [17.22%]
2 - Low risk [26.83%]
3 - Moderate risk [24.87%]
4 - High risk [19.10%]
5 - Extreme risk [11.97%]

risk_snow: Extreme snow (or ice) storms
1 - No risk [24.70%]
2 - Low risk [21.51%]
3 - Moderate risk [24.26%]
4 - High risk [17.83%]
5 - Extreme risk [11.70%]

risk_tor: Tornadoes
1 - No risk [18.80%]
2 - Low risk [29.74%]
3 - Moderate risk [26.28%]
4 - High risk [14.39%]
5 - Extreme risk [10.79%]

risk_flood: Floods
1 - No risk [11.79%]
2 - Low risk [26.25%]
3 - Moderate risk [32.71%]
4 - High risk [18.53%]
5 - Extreme risk [10.72%]

risk_hur: Hurricanes
1 - No risk [42.52%]
2 - Low risk [19.52%]
3 - Moderate risk [16.19%]
4 - High risk [11.73%]
5 - Extreme risk [10.04%]

risk_fire: Wildfires
1 - No risk [26.84%]
2 - Low risk [31.56%]
3 - Moderate risk [17.97%]
4 - High risk [12.02%]
5 - Extreme risk [11.62%]

--End Web pg--
risk_tie: It looks like you gave these extreme weather events the same rating. Please indicate which type of event poses the biggest risk to you and the people in your area. [CHECK BOX OF TOP RISKS; RANDOM ORDER; 1 = SELECTED]

End Web pg

Now we have some questions about the National Weather Service (NWS), an agency of the United States government that issues weather forecasts and different kinds of alerts to the public about hazardous weather, including severe weather watches and warnings.

alert_und: In general, do you understand the difference between watches and warnings?
1 - Definitely no [1.40%]
2 - Probably no [4.19%]
3 - Not sure [12.80%]
4 - Probably yes [39.51%]
5 - Definitely yes [42.10%]

End Web pg

The next few questions focus on severe thunderstorms and tornadoes. They may be relatively rare in your area, but severe thunderstorms and tornadoes can happen in every state.

To the best of your knowledge, is the following alert considered a tornado watch or a warning? [RANDOM SPLIT; 50% get torwatch; 50% get torwarn]

torwatch: This alert is issued when severe thunderstorms and tornadoes are possible in and near the area. It does not mean that they will occur. It only means they are possible.
1 - Tornado WATCH [70.78%]
2 - Tornado WARNING [23.32%]
3 - Don’t know [5.90%]

torwarn: This alert is used when a tornado is imminent. When this alert is issued, seek safe shelter immediately.
1 - Tornado WATCH [15.30%]
2 - Tornado WARNING [79.52%]
3 - Don’t know [5.18%]

End Web pg

warn_time: If the National Weather Service issues a tornado WARNING for your area, how much time do you have before the tornado arrives?
1 - less than 1 hour [58.58%]
2 - 1 to 24 hours [32.77%]
3 - 1 to 3 days [6.91%]
4 - more than 3 days [1.74%]

warn_size: Approximately how large is the area included in an average tornado WARNING?
1 - around the size of a city [29.53%]
2 - around the size of a county [36.35%]
3 - around the size of multiple counties [29.94%]
4 - around the size of a state [2.46%]
5 - around the size of multiple states [1.71%]

[SHOW ONLY IF warn_time = 1]
warn_time_minutes: You indicated that there is less than 1 hour between when tornado WARNINGS are issued and when tornadoes arrive. To the best of your knowledge, how many minutes are there between when tornado WARNINGS are issued and when tornadoes arrive? [VERBATIM, REQUIRED NUMERIC <= 60] minutes [Mean = 26.87]

[SHOW ONLY IF warn_time = 2]

warn_time_hours: You indicated that there is 1 to 24 hours between when tornado WARNINGS are issued and when tornadoes arrive. To the best of your knowledge, how many hours are there between when tornado WARNINGS are issued and when tornadoes arrive? [VERBATIM, REQUIRED NUMERIC <=24] hours [Mean = 5.98]

watch_time: If the National Weather Service issues a tornado WATCH for your area, how much time do you have before the tornado arrives?
1 - less than 1 hour [21.64%]
2 - 1 to 24 hours [61.90%]
3 - 1 to 3 days [13.10%]
4 - more than 3 days [3.37%]

watch_size: Approximately how large is the area included in an average tornado WATCH?
1 - around the size of a city [20.51%]
2 - around the size of a county [32.06%]
3 - around the size of multiple counties [40.84%]
4 - around the size of a state [4.38%]
5 - around the size of multiple states [2.21%]

[SHOW ONLY IF watch_time = 1]

watch_time_minutes: You indicated that there is less than 1 hour between when tornado WATCHES are issued and when tornadoes arrive. To the best of your knowledge, how many minutes are there between when tornado WATCHES are issued and when tornadoes arrive? [VERBATIM, REQUIRED NUMERIC <=60] minutes [Mean = 30.09]

[SHOW ONLY IF watch_time = 1]

watch_time_hours: You indicated that there is 1 to 24 hours between when tornado WATCHES are issued and when tornadoes arrive. To the best of your knowledge, how many hours are there between when tornado WATCHES are issued and when tornadoes arrive? [VERBATIM, REQUIRED NUMERIC <=24] hours [Mean = 6.83]

tor_watchwarn_und: How would you rate your understanding of tornado watches and warnings?
1 - Poor [9.59%]
2 - Fair [25.61%]
3 - Good [32.54%]
4 - Very good [22.28%]
5 - Excellent [9.97%]

tor_map_und: Forecasters, websites, and phone applications often use maps to display tornado watches and warnings. How would you rate your understanding of maps?
tor_radar_und: Forecasters, websites, and phone applications also use radar images to communicate tornado risk. How would you rate your understanding of radar images?
1 - Poor [7.43%]
2 - Fair [21.95%]
3 - Good [34.61%]
4 - Very good [24.38%]
5 - Excellent [11.63%]

In addition to tornadoes, the National Weather Service issues alerts for severe thunderstorms. To the best of your knowledge, which of the following hazards does the National Weather Service consider when issuing SEVERE THUNDERSTORM WARNINGS? Please indicate all that apply. [CHECK BOX, RANDOM ORDER, 1 = SELECTED]
svr_hail: Large hail [57.54%]
svr_wind: High winds [75.96%]
svr_lightning: Lightning [75.81%]
svr_flood: Flooding [59.97%]
svr_rain: Extreme rainfall [74.73%]

svr_watchwarn_und: How would you rate your understanding of severe thunderstorm WATCHES and WARNINGS?
1 - Poor [4.86%]
2 - Fair [22.63%]
3 - Good [37.03%]
4 - Very good [23.56%]
5 - Excellent [11.92%]

ffd_und: The National Weather Service also issues alerts for flash floods. How would you rate your understanding of flash flood WATCHES and WARNINGS?
1 – Poor [6.30%]
2 – Fair [22.17%]
3 – Good [37.88%]
4 - Very good [22.66%]
5 – Excellent [10.99%]

ffd_watchwarn_und: Do you understand the difference between floods and flash floods?
1 - Definitely no [3.42%]
2 - Probably no [8.80%]
3 - Not sure [19.43%]
4 - Probably yes [45.09%]
5 - Definitely yes [23.27%]

ffd_describe: Please use a few words to explain the primary difference between floods and flash floods? [VERBATIM]
To the best of your knowledge, what is the deepest amount of fast-flowing (flash-flooding) water that is safe to cross by foot? [VERBATIN, REQUIRE NUMERIC] [mean = 11.1] inches.

To the best of your knowledge, what is the deepest amount of fast-flowing (flash-flooding) water that is safe to cross in a car? [VERBATIN, REQUIRE NUMERIC] [mean = 7.64] inches.

The next set of questions is about TORNADOES.

Please tell us how strongly you agree with the following statements about tornado WARNINGS: [RANDOM ORDER%]

rec_all: I receive all tornado warnings that are issued for my area.
1. Strongly disagree [8.17%]
2. Disagree [11.35%]
3. Neither disagree nor agree [31.00%]
4. Agree [30.80%]
5. Strongly agree [18.68%]

rec_most: I receive most tornado warnings that are issued for my area.
1. Strongly disagree [7.59%]
2. Disagree [7.84%]
3. Neither disagree nor agree [25.91%]
4. Agree [41.45%]
5. Strongly agree [17.20%]

rec_soon: I receive tornado warnings as soon as they are issued for my area.
1. Strongly disagree [5.64%]
2. Disagree [10.46%]
3. Neither disagree nor agree [29.97%]
4. Agree [34.91%]
5. Strongly agree [19.02%]

rec_miss: Sometimes I miss tornado warnings that are issued for my area.
1. Strongly disagree [19.99%]
2. Disagree [24.86%]
3. Neither disagree nor agree [28.86%]
4. Agree [21.69%]
5. Strongly agree [4.60%]

rec_area: Sometimes I am not sure if a tornado warning is for my area or a different area.
1. Strongly disagree [19.77%]
2. Disagree [30.60%]
3. Neither disagree nor agree [27.66%]
4. Agree [17.46%]
5. Strongly agree [4.50%]

rec_time: Sometimes I am not sure what time tornado warnings begin and end for my area.
1. Strongly disagree [16.63%]
2. Disagree [24.49%]
3. Neither disagree nor agree [31.45%]
4. Agree [21.52%]
5. Strongly agree [5.91%]
Sometimes people miss tornado WARNINGS because they are doing something that makes it difficult to pay attention to the weather. For example, people often miss tornado warnings when they are sleeping. How confident are you that you would receive tornado warnings in the following situations? [RANDOM ORDER%]

rec_sleep: If you are sleeping?
1 - Not at all confident [25.87%]
2 - Not very confident [27.51%]
3 - Somewhat confident [23.93%]
4 - Very confident [14.01%]
5 - Extremely confident [8.68%]

rec_driving: If you are in a car?
1 - Not at all confident [7.52%]
2 - Not very confident [16.20%]
3 - Somewhat confident [33.46%]
4 - Very confident [28.07%]
5 - Extremely confident [14.75%]

rec_work: If you are at work or school?
1 - Not at all confident [5.50%]
2 - Not very confident [9.24%]
3 - Somewhat confident [32.59%]
4 - Very confident [31.81%]
5 - Extremely confident [20.85%]

rec_store: If you are at a store?
1 - Not at all confident [7.06%]
2 - Not very confident [19.18%]
3 - Somewhat confident [35.61%]
4 - Very confident [24.28%]
5 - Extremely confident [13.86%]

rec_small_group: If you are with a small group of friends or family?
1 - Not at all confident [5.38%]
2 - Not very confident [11.81%]
3 - Somewhat confident [38.43%]
4 - Very confident [28.32%]
5 - Extremely confident [16.06%]

rec_large_group: If you are with a large group of friends or family?
1 - Not at all confident [4.87%]
2 - Not very confident [13.56%]
3 - Somewhat confident [34.66%]
4 - Very confident [29.81%]
5 - Extremely confident [17.09%]

rec_stream: If you are watching a show or movie using an online streaming service like Netflix, Amazon Prime, or Hulu?
1 - Not at all confident [13.04%]
2 - Not very confident [20.43%]
3 - Somewhat confident [29.25%]
4 - Very confident [22.34%]
5 - Extremely confident [14.95%]

rec_dif_sit: Can you think of a different situation that might cause you to miss a tornado warning? [VERATIM%]
warn_hist: Do you recall having ever received a tornado WARNING for your area?
0 - No [38.86%]
1 - Yes [61.64%]

[SHOW IF warn_hist = 1%]
Think about the *most recent* tornado WARNING that you remember receiving.

warn_when: When did you receive the tornado warning?
1 - less than 1 month ago [23.79%]
2 - between 1 and 3 months ago [21.41%]
3 - between 3 and 12 months ago [17.62%]
4 - between 1 and 3 years ago [16.79%]
5 - more than 3 years ago [9.09%]
6 - I don’t recall [11.30%]

How did you learn about the tornado warning? Please select all that apply.

warn_how_br_rad: Broadcast radio [14.73%]
warn_how_wx_rad: Weather radio (National Weather Service radio) [15.88%]
warn_how_tv: Television [54.87%]
warn_how_siren: Siren or other alarm [23.92%]
warn_how_int: Internet [14.02%]
warn_how_soc: Social media such as Twitter or Facebook [9.27%]
warn_how_word: Word-of-mouth (including telephone or text messages, email, etc.) from family, friends, neighbors, employers, co-workers, etc. [11.06%]
warn_how_phone: Automated text or phone notification [37.13%]
warn_how_oth: Other source (please specify) [3.08%]
warn_how_spec: [VERBATIM%]

warn_timercv: What time was it when you received the tornado warning?
1 - Between 6am and noon [6.44%]
2 - Between noon and 6pm [36.57%]
3 - Between 6pm and midnight [33.12%]
4 - Between midnight and 6am [2.44%]
5 - I don’t recall [21.42%]

warn_where: Where were you when you received the tornado warning?
1 - At home [73.82%]
2 - At work [10.31%]
3 - At school [2.62%]
4 - At a business (such as a store or restaurant) [2.59%]
5 - In a vehicle (such as a car, truck, or bus) [3.37%]
6 - Somewhere else (please specify) [1.38%]
7 - I don’t recall [5.92%]
warn_where Specify: [VERBATIM%]

warn_iss: Did you receive the tornado warning as soon as it was issued?
0 - No [6.34%]
1 - Yes [69.06%]
2 - I don’t recall [24.60%]

warn_sure: Were you sure that the tornado warning was for your area and not a different area?
warn_tor: Did a tornado touch down in the tornado warning area?
0 - No [50.76%]
1 - Yes [29.80%]
2 - I don’t recall/don’t know [19.44%]

last_act: What did you do when you got the most recent tornado warning that you remember receiving?
0 - Nothing; continued my daily activities [14.88%]
1 - Monitored the situation, but did not move to shelter [50.92%]
2 - Moved to the most sheltered part of the building, but did not leave the building [21.76%]
3 - Moved to a specially constructed storm shelter in the building [4.43%]
4 - Moved to a nearby location or building that provided safer shelter [3.04%]
5 - Left the building and drove away from the tornado warning area [1.13%]
6 - Something else (please specify) [1.12%]
7 - I don’t recall [2.72%]

last_act_spec: [VERBATIM]

last_act_satis: Looking back, how would you rate your satisfaction with the action you took?
1 - Very dissatisfied [1.70%]
2 - Dissatisfied [3.37%]
3 - Neither dissatisfied nor satisfied [21.57%]
4 - Satisfied [49.11%]
5 - Very satisfied [24.24%]

last_act_again: How likely is it that you would take the same action again if you were in the same situation in the future?
1 - Very unlikely [2.62%]
2 - Somewhat unlikely [5.37%]
3 - About as likely as not [25.22%]
4 - Somewhat likely [28.33%]
5 - Very likely [38.45%]

next_act_day: If you are at home during daylight hours and you receive a tornado warning for your area, what do you plan to do?
0 - Nothing; continue my daily activities [7.12%]
1 - Monitor the situation, but not move to shelter [36.15%]
2 - Move to the most sheltered part of my residence, but not leave the building [33.03%]
3 - Move to a specially constructed storm shelter in the building [7.88%]
4 - Move to a nearby location or building that provides safer shelter [5.71%]
5 - Leave the building and drive away from the tornado warning area [2.57%]
6 - Something else (please specify) [VERBATIM] [0.94%]
7 - Not sure [6.59%]

next_act_day_spec: [VERBATIM]
next_act_night: If you are at home in the middle of the night and you receive a tornado warning for your area, what do you plan to do?
0 - Nothing; continue my nightly activities [7.24%]
1 - Monitor the situation, but not move to shelter [29.78%]
2 - Move to the most sheltered part of my residence, but not leave the building [40.02%]
3 - Move to a specially constructed storm shelter in the building [7.26%]
4 - Move to a nearby location or building that provides safer shelter [5.99%]
5 - Leave the building and drive away from the tornado warning area [1.83%]
6 - Something else (please specify) [VERBATIM] [0.95%]
7 - Not sure [6.94%]
next_act_night_spec: [VERBATIM]

Please tell us how strongly you agree with the following statements about tornado WARNINGS. If you have never received a tornado WARNING, please tell us how you think you will respond if you receive a WARNING in the future: [RANDOM ORDER%]

resp_ignore: Sometimes I ignore tornado warnings that are issued for my area.
1 - Strongly disagree [25.71%]
2 - Disagree [29.63%]
3 - Neither disagree nor agree [25.43%]
4 - Agree [15.54%]
5 - Strongly agree [3.69%]

resp_prot: I always take protective action when tornado warnings are issued for my area.
1 - Strongly disagree [4.26%]
2 - Disagree [14.67%]
3 - Neither disagree nor agree [36.06%]
4 - Agree [30.53%]
5 - Strongly agree [14.48%]

resp_busy: Sometimes I am too busy to take protective action when tornado warnings are issued for my area.
1 - Strongly disagree [24.23%]
2 - Disagree [32.89%]
3 - Neither disagree nor agree [27.92%]
4 - Agree [10.72%]
5 - Strongly agree [4.22%]

resp_unsure: I am not sure what to do when tornado warnings are issued for my area.
1 - Strongly disagree [24.46%]
2 - Disagree [33.07%]
3 - Neither disagree nor agree [22.82%]
4 - Agree [14.62%]
5 - Strongly agree [5.04%]

Sometimes people receive tornado WARNINGS but do not take protective action because they are busy or doing something that makes it difficult to respond. For example, people often decide not to take protective action in response to tornado warnings when they are sleeping. How confident are you that you would take protective action in response to tornado warnings in the following situations? [RANDOM ORDER%]

resp_sleep: If you are sleeping?
1 - Not at all confident [19.17%]
2 - Not very confident [25.19%]
3 - Somewhat confident [28.63%]
4 - Very confident [16.12%]
5 - Extremely confident [10.89%]

resp_driving: If you are in a car?
1 - Not at all confident [6.79%]
2 - Not very confident [17.22%]
3 - Somewhat confident [35.01%]
4 - Very confident [25.23%]
5 - Extremely confident [15.74%]

resp_work: If you are at work or school?
1 - Not at all confident [5.52%]
2 - Not very confident [9.86%]
3 - Somewhat confident [33.30%]
4 - Very confident [31.37%]
5 - Extremely confident [19.94%]

resp_store: If you are at a store?
1 - Not at all confident [6.18%]
2 - Not very confident [17.10%]
3 - Somewhat confident [37.52%]
4 - Very confident [24.57%]
5 - Extremely confident [14.62%]

resp_small_group: If you are with a small group friends or family?
1 - Not at all confident [5.27%]
2 - Not very confident [10.90%]
3 - Somewhat confident [37.95%]
4 - Very confident [28.96%]
5 - Extremely confident [16.92%]

resp_large_group: If you are with a large group friends or family?
1 - Not at all confident [5.92%]
2 - Not very confident [11.99%]
3 - Somewhat confident [37.17%]
4 - Very confident [28.76%]
5 - Extremely confident [16.15%]

res_stream: If you are watching a show or movie using an online streaming service like Netflix, Amazon Prime, or Hulu?
1 - Not at all confident [7.63%]
2 - Not very confident [17.73%]
3 - Somewhat confident [31.85%]
4 - Very confident [26.48%]
5 - Extremely confident [16.31%]

resp_dif_sit: Can you think of a different situation that might cause you to not take protective action in response to a tornado warning? [VERBATIM%]

-----------------------------------End Web pg -----------------------------------

For some people the time of day influences tornado warning reception, understanding, and/or responsiveness.

If a tornado WARNING were issued for your area tomorrow at [rand_morn: 1:00 AM | 2:00 AM | 3:00 AM | 4:00 AM | 5:00 AM | 6:00 AM | 7:00 AM | 8:00 AM | 9:00 AM], how confident are you that you would…
rec_morn: Receive the warning?

<table>
<thead>
<tr>
<th>Time</th>
<th>Extremely confident</th>
<th>Very confident</th>
<th>Somewhat confident</th>
<th>Not at all confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 AM</td>
<td>14.37%</td>
<td>20.90%</td>
<td>17.29%</td>
<td>16.25%</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>23.77%</td>
<td>17.95%</td>
<td>23.80%</td>
<td>25.76%</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>5.07%</td>
<td>30.77%</td>
<td>27.67%</td>
<td>27.61%</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>20.37%</td>
<td>19.24%</td>
<td>18.70%</td>
<td>19.95%</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>15.42%</td>
<td>12.13%</td>
<td>13.44%</td>
<td>10.43%</td>
</tr>
</tbody>
</table>

und_morn: Understand the warning?

<table>
<thead>
<tr>
<th>Time</th>
<th>Extremely confident</th>
<th>Very confident</th>
<th>Somewhat confident</th>
<th>Not at all confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 AM</td>
<td>52%</td>
<td>28%</td>
<td>18%</td>
<td>16%</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>100%</td>
<td>5%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>100%</td>
<td>5%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>100%</td>
<td>5%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>100%</td>
<td>5%</td>
<td>2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

resp_morn: Take protective action in response to the warning?

<table>
<thead>
<tr>
<th>Time</th>
<th>Extremely confident</th>
<th>Very confident</th>
<th>Somewhat confident</th>
<th>Not at all confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 AM</td>
<td>7.7%</td>
<td>13.6%</td>
<td>6.12%</td>
<td>7.02%</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>13.52%</td>
<td>11.62%</td>
<td>19.69%</td>
<td>17.22%</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>36.30%</td>
<td>32.31%</td>
<td>33.37%</td>
<td>34.79%</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>25.11%</td>
<td>23.34%</td>
<td>26.01%</td>
<td>28.03%</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>17.29%</td>
<td>19.13%</td>
<td>14.80%</td>
<td>12.94%</td>
</tr>
</tbody>
</table>

rec_after: Receive the warning?

<table>
<thead>
<tr>
<th>Time</th>
<th>Extremely confident</th>
<th>Very confident</th>
<th>Somewhat confident</th>
<th>Not at all confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 AM</td>
<td>16.7%</td>
<td>1.77%</td>
<td>3.44%</td>
<td>4.48%</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>5.70%</td>
<td>5.62%</td>
<td>3.05%</td>
<td>5.05%</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>30.12%</td>
<td>25.28%</td>
<td>24.45%</td>
<td>30.26%</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>28.92%</td>
<td>40.41%</td>
<td>41.63%</td>
<td>34.94%</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>33.60%</td>
<td>26.91%</td>
<td>27.44%</td>
<td>27.82%</td>
</tr>
</tbody>
</table>

und_after: Understand the warning?

<table>
<thead>
<tr>
<th>Time</th>
<th>Extremely confident</th>
<th>Very confident</th>
<th>Somewhat confident</th>
<th>Not at all confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 AM</td>
<td>2.54%</td>
<td>0.96%</td>
<td>2.29%</td>
<td>2.04%</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>1.53%</td>
<td>6.01%</td>
<td>4.31%</td>
<td>6.25%</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>30.71%</td>
<td>24.26%</td>
<td>22.19%</td>
<td>28.48%</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>31.79%</td>
<td>41.69%</td>
<td>41.05%</td>
<td>32.44%</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>28.83%</td>
<td>26.18%</td>
<td>30.17%</td>
<td>30.79%</td>
</tr>
</tbody>
</table>

resp_after: Take protective action in response to the warning?

<table>
<thead>
<tr>
<th>Time</th>
<th>Extremely confident</th>
<th>Very confident</th>
<th>Somewhat confident</th>
<th>Not at all confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 AM</td>
<td>2.18%</td>
<td>1.57%</td>
<td>2.53%</td>
<td>3.42%</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>10.08%</td>
<td>9.55%</td>
<td>9.32%</td>
<td>8.41%</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>34.86%</td>
<td>27.95%</td>
<td>29.85%</td>
<td>33.47%</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>26.19%</td>
<td>38.69%</td>
<td>32.34%</td>
<td>28.72%</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>26.77%</td>
<td>22.23%</td>
<td>25.96%</td>
<td>25.98%</td>
</tr>
</tbody>
</table>

If a tornado WARNING were issued for your area tomorrow at **rand_after**: 10:00 AM | 11:00 AM | 12:00 PM (noon) | 1:00 PM | 2:00 PM | 3:00 PM | 4:00 PM | 5:00 PM, how confident are you that you would…

rec_eve: Receive the warning?

<table>
<thead>
<tr>
<th>Time</th>
<th>Extremely confident</th>
<th>Very confident</th>
<th>Somewhat confident</th>
<th>Not at all confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 AM</td>
<td>2.18%</td>
<td>1.57%</td>
<td>2.53%</td>
<td>3.42%</td>
</tr>
<tr>
<td>2:00 AM</td>
<td>10.08%</td>
<td>9.55%</td>
<td>9.32%</td>
<td>8.41%</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>34.86%</td>
<td>27.95%</td>
<td>29.85%</td>
<td>33.47%</td>
</tr>
<tr>
<td>4:00 AM</td>
<td>26.19%</td>
<td>38.69%</td>
<td>32.34%</td>
<td>28.72%</td>
</tr>
<tr>
<td>5:00 AM</td>
<td>26.77%</td>
<td>22.23%</td>
<td>25.96%</td>
<td>25.98%</td>
</tr>
</tbody>
</table>

If a tornado WARNING were issued for your area tomorrow at **rand_eve**: 6:00 PM | 7:00 PM | 8:00 PM | 9:00 PM | 10:00 PM | 11:00 PM | 12:00 AM (midnight), how confident are you that you would…

rec_eve: Receive the warning?

<table>
<thead>
<tr>
<th>Time</th>
<th>Extremely confident</th>
<th>Very confident</th>
<th>Somewhat confident</th>
<th>Not at all confident</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 PM</td>
<td>2.18%</td>
<td>1.57%</td>
<td>2.53%</td>
<td>3.42%</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>10.08%</td>
<td>9.55%</td>
<td>9.32%</td>
<td>8.41%</td>
</tr>
<tr>
<td>8:00 PM</td>
<td>34.86%</td>
<td>27.95%</td>
<td>29.85%</td>
<td>33.47%</td>
</tr>
<tr>
<td>9:00 PM</td>
<td>26.19%</td>
<td>38.69%</td>
<td>32.34%</td>
<td>28.72%</td>
</tr>
<tr>
<td>10:00 PM</td>
<td>26.77%</td>
<td>22.23%</td>
<td>25.96%</td>
<td>25.98%</td>
</tr>
<tr>
<td>11:00 PM</td>
<td>2.18%</td>
<td>1.57%</td>
<td>2.53%</td>
<td>3.42%</td>
</tr>
<tr>
<td>12:00 AM</td>
<td>10.08%</td>
<td>9.55%</td>
<td>9.32%</td>
<td>8.41%</td>
</tr>
</tbody>
</table>
Imagine that it is Saturday \textit{night} at 8:00 PM and you get a tornado warning indicating that there is a high risk for tornadoes at your location in the next \textit{lead_time:} 15 | 30 | 60 minutes.

\textbf{tom_warn_resp:} What would you do? Please be as specific as possible. \textit{[VERBATIM]}

\textbf{tom_warn_trust:} How much trust would you have in the accuracy of this forecast?

<table>
<thead>
<tr>
<th>Time</th>
<th>15 mins</th>
<th>30 mins</th>
<th>60 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - No trust</td>
<td>0.42%</td>
<td>0.76%</td>
<td>0.88%</td>
</tr>
<tr>
<td>2 - Low trust</td>
<td>1.75%</td>
<td>1.90%</td>
<td>1.37%</td>
</tr>
<tr>
<td>3 - Moderate trust</td>
<td>11.85%</td>
<td>13.38%</td>
<td>13.47%</td>
</tr>
<tr>
<td>4 - High trust</td>
<td>14.02%</td>
<td>14.08%</td>
<td>13.26%</td>
</tr>
<tr>
<td>5 - Complete trust</td>
<td>5.02%</td>
<td>3.71%</td>
<td>4.12%</td>
</tr>
</tbody>
</table>

\textbf{tom_warn_conf:} How confident are you that you would take the action you describe?

<table>
<thead>
<tr>
<th>Time</th>
<th>15 mins</th>
<th>30 mins</th>
<th>60 mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - No trust</td>
<td>0.49%</td>
<td>0.80%</td>
<td>0.44%</td>
</tr>
<tr>
<td>2 - Low trust</td>
<td>1.48%</td>
<td>1.29%</td>
<td>1.77%</td>
</tr>
<tr>
<td>3 - Moderate trust</td>
<td>8.39%</td>
<td>10.81%</td>
<td>9.81%</td>
</tr>
<tr>
<td>4 - High trust</td>
<td>13.50%</td>
<td>13.11%</td>
<td>13.50%</td>
</tr>
<tr>
<td>5 - Complete trust</td>
<td>9.14%</td>
<td>7.83%</td>
<td>7.64%</td>
</tr>
</tbody>
</table>

Now, we want you to think about the actions you might take if you have more advance notice of a storm that may produce tornadoes.

Imagine that it is Saturday \textit{morning} at 8:00 AM and you get a tornado outlook indicating that there is a high risk for tornadoes at your location on Saturday \textit{[add_time: afternoon and evening | night between 6:00 PM and 10:00 PM].}

\textbf{tom_day1_resp:} What would you do? Please be as specific as possible. \textit{[VERBATIM]}

\textbf{tom_day1_trust:} How much trust would you have in the accuracy of this forecast?
Extreme weather can be dangerous and technically complex, so getting information you can trust is important. Please indicate your level of trust in information about extreme weather from each of the following organizations and groups. [RANDOM ORDER IN TABLE]

nws_trust: The National Weather Service
1 - No trust [1.70%]
2 - Low trust [2.40%]
3 - Moderate trust [21.50%]
4 - High trust [44.04%]
5 - Complete trust [30.35%]

lotv_trust: Regional or local TV stations
1 - No trust [2.33%]
2 - Low trust [4.20%]
3 - Moderate trust [27.72%]
4 - High trust [43.87%]
5 - Complete trust [21.88%]

natv_trust: National TV stations (like the Weather Channel)
1 - No trust [2.00%]
2 - Low trust [5.48%]
3 - Moderate trust [30.99%]
4 - High trust [39.81%]
5 - Complete trust [21.73%]

em_trust: State or local emergency managers
1 - No trust [2.11%]
2 - Low trust [4.33%]
3 - Moderate trust [28.23%]
4 - High trust [42.68%]
5 - Complete trust [22.65%]

fam_trust: Family, friends, neighbors, employers, co-workers, etc.
1 - No trust [4.66%]
2 - Low trust [15.98%]
3 - Moderate trust [49.49%]
4 - High trust [20.15%]
5 - Complete trust [9.72%]
People think about many factors when deciding how much they trust a person, group, or organization that provides weather information. How important are the following factors to you? [RANDOM ORDER IN TABLE]

trust_face: Forecast accuracy
1 - Not at all important [1.53%]
2 - Not very important [2.49%]
3 - Somewhat important [16.45%]
4 - Very important [40.81%]
5 - Extremely important [38.73%]

trust_loc: Knowledge of my area
1 - Not at all important [2.16%]
2 - Not very important [3.27%]
3 - Somewhat important [20.63%]
4 - Very important [42.91%]
5 - Extremely important [31.02%]

trust_simp: Simple communication
1 - Not at all important [2.12%]
2 - Not very important [4.67%]
3 - Somewhat important [26.84%]
4 - Very important [40.34%]
5 - Extremely important [26.04%]

trust_comp: Comprehensive information
1 - Not at all important [2.50%]
2 - Not very important [2.93%]
3 - Somewhat important [23.64%]
4 - Very important [43.59%]
5 - Extremely important [27.34%]

trust_soc: Friend/family recommendations
1 - Not at all important [7.03%]
2 - Not very important [15.81%]
3 - Somewhat important [41.77%]
4 - Very important [23.51%]
5 - Extremely important [11.87%]

trust_acc: Easy access
1 - Not at all important [2.06%]
2 - Not very important [4.61%]
3 - Somewhat important [24.54%]
4 - Very important [41.98%]
5 - Extremely important [26.81%]

Warnings and information about severe weather are available from multiple sources. How much do you, personally, rely on each of the following sources of information about extreme weather? [RANDOM ORDER]

wx_info1: Broadcast radio
1 - Not much [12.82%]
2 - Little [13.07%]

3 - Somewhat [31.56%]
4 - Much [25.81%]
5 - A great deal [16.74%]

wx_info2: Weather radio (National Weather Service radio)
1 - Not much [16.51%]
2 - Little [9.01%]
3 - Somewhat [24.43%]
4 - Much [28.04%]
5 - A great deal [22.02%]

wx_info3: Television
1 - Not much [5.77%]
2 - Little [6.38%]
3 - Somewhat [25.49%]
4 - Much [33.06%]
5 - A great deal [29.30%]

wx_info4: Internet web pages focused on weather forecasts, such as those provided by the National Weather Service
1 - Not much [8.96%]
2 - Little [10.90%]
3 - Somewhat [32.86%]
4 - Much [28.62%]
5 - A great deal [18.65%]

wx_info5: Social media, such as Twitter or Facebook
1 - Not much [33.88%]
2 - Little [16.71%]
3 - Somewhat [26.08%]
4 - Much [13.35%]
5 - A great deal [9.98%]

wx_info6: Word-of-mouth (including telephone calls or texts) from family, friends, neighbors, employers, co-workers, etc.
1 - Not much [13.33%]
2 - Little [17.51%]
3 - Somewhat [38.13%]
4 - Much [19.95%]
5 - A great deal [11.08%]

wx_info7: Automated text or phone notifications
1 - Not much [9.17%]
2 - Little [7.83%]
3 - Somewhat [26.06%]
4 - Much [28.24%]
5 - A great deal [28.70%]

wx_info8: Outdoor warning sirens
1 - Not much [13.02%]
2 - Little [9.66%]
3 - Somewhat [24.08%]
4 - Much [25.44%]
5 - A great deal [27.80%]

------------------------End Web pg----------------------
wx_info_tie: It looks like you gave these sources the same rating. Please indicate which source you rely on the most for information about severe weather. [CHECK BOX OF TOP SOURCES; RANDOM ORDER; 1 = SELECTED]

Forecasters use different phrases to describe the risk of tornadoes in an area. We want to know what these phrases mean to you.

What does it mean if there is a [risk_word: SLIGHT RISK | MODERATE RISK | HIGH RISK] of tornadoes in your area tomorrow evening?

risk_desc: Please provide a sentence or two interpreting the phrase risk_word [VERBATIM]

risk_perc: If there is a risk_word of tornadoes in your area tomorrow evening, how likely is it that a tornado will hit within 25 miles of your residence? Please indicate the probability as a percent that ranges from 0 to 100, where 0 means no chance and 100 means that it is certain. [VERBATIM, REQUIRED NUMERIC]

<table>
<thead>
<tr>
<th>risk_word</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIGHT RISK</td>
<td>25.78%</td>
</tr>
<tr>
<td>MODERATE RISK</td>
<td>39.88%</td>
</tr>
<tr>
<td>HIGH RISK</td>
<td>51.31%</td>
</tr>
</tbody>
</table>

Forecasters also use different phrases to explain the possibility that [RANDOMIZE prob_event: severe thunderstorms | tornadoes] will happen. When you see the following phrases, what percent chance comes to mind? Please indicate the chance as a percent that ranges from 0 to 100, where 0 means no chance and 100 means that it is certain. [RANDOM ORDER]

risk_chan: There is a chance of prob_event this afternoon and evening [VERBATIM]%

risk_pos: prob_event are possible this afternoon and evening [VERBATIM]%

risk_may: prob_event may occur this afternoon and evening [VERBATIM]%

risk_exp: prob_event are expected this afternoon and evening [VERBATIM]%

<table>
<thead>
<tr>
<th></th>
<th>severe thunderstorms</th>
<th>tornadoes</th>
</tr>
</thead>
<tbody>
<tr>
<td>risk_chan</td>
<td>33.24%</td>
<td>29.78%</td>
</tr>
<tr>
<td>risk_pos</td>
<td>38.31%</td>
<td>34.82%</td>
</tr>
<tr>
<td>risk_may</td>
<td>36.88%</td>
<td>31.03%</td>
</tr>
<tr>
<td>risk_exp</td>
<td>60.86%</td>
<td>57.19%</td>
</tr>
</tbody>
</table>

Now we want to know how you interpret more specific probabilities in weather forecasts. If you don’t know an answer to one of the following questions, please provide your best guess.

prc_1: Assuming no knowledge of a specific storm, on average what are the chances that a tornado will occur within 25 miles of your residence on any given day?
1 - Less than 1% [47.58%]
2 - Between 1% and 5% [32.87%]
3 - Between 5% and 10% [19.54%]

prc_2: Assuming no knowledge of a specific storm, please select the forecast that indicates the highest chance that you will experience a tornado tomorrow. If the chances are equal, select option three. [RANDOMIZE ORDER OF OPTIONS 1 & 2]
1 - There is a 50% chance that a tornado will occur within 25 miles of your location tomorrow. [35.22%]
2 - There is a 2% chance that a tornado will occur within 1 mile of your location tomorrow. [34.03%]
3 - The forecasts are equal. [30.75%]

prc_3: Assuming no knowledge of a specific storm, please select the forecast that indicates the highest chance that you will experience a tornado tomorrow. If the chances are equal, select option three. [RANDOMIZE ORDER OF OPTIONS 1 & 2]
1 - There is a 70% chance that a severe thunderstorm will develop within 25 miles of your location tomorrow; if a severe thunderstorm develops, there is a 10% chance that a tornado will occur within 25 miles of your location. [46.28%]
2 - There is a 2% chance that a tornado will occur within 25 miles of your location tomorrow. [31.76%]
3 - The forecasts are equal. [21.96%]

prc_4: Imagine that forecasters believe there will be a severe thunderstorm in your area tomorrow afternoon that will cause flash flooding within 25 miles of your location. There is also a 1% chance that it will cause a tornado within 25 miles of your location. Which of the following events is more likely? [RANDOMIZE ORDER OF OPTIONS 1 & 2]
1 - A tornado will occur in your area. [27.77%]
2 - A flash flood and a tornado will occur in your area. [72.23%]

prc_5: Imagine that you live in a place that gets an average of one day of rain each week. Assuming no knowledge of a specific storm, what are the chances that you will get rain on any given day of the week?
1 - Less than 10% [19.93%]
2 - Between 10% and 20% [57.58%]
3 - More than 20% [22.49%]

Now, we have some basic questions about how you assess various probabilities and risks. For the next few questions, please do not use a calculator but feel free to make notes or use paper if needed.

cointoss: Imagine that we flip a fair coin 1,000 times. What is your best guess about how many times the coin would come up heads in 1,000 flips? [VERBATIM; REQUIRED NUMERIC, ALLOW DECIMAL] [Answer = 500] [Correct = 61.44%]

bigbucks: In the BIG BUCKS LOTTERY, the chance of winning a $10 prize is 1%. What is your best guess about how many people would win a $10 prize if 1,000 people each buy a single ticket to BIG BUCKS? [VERBATIM; REQUIRED NUMERIC] [Answer = 10] [Correct = 51.96%]

acme_pub: In ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 in 1,000. What percent of tickets to ACME PUBLISHING SWEEPSTAKES win a car? [VERBATIM; REQUIRED NUMERIC, ALLOW DECIMAL] percent [Answer = 0.1] [Correct = 20.43%]

choir: Out of 1,000 people in a small town 500 are members of a choir. Out of these 500 members in a choir 100 are men. Out of the 500 inhabitants that are not in a choir 300 are men. What is the probability that a randomly drawn man is a member of the choir? Please indicate the probability as a percent. [VERBATIM; REQUIRED NUMERIC] percent [Answer = 25] [Correct = 10.38%]

fiveside: Imagine we are throwing a five-sided die 50 times. On average, out of these 50 throws how many times would this five-sided die show an odd number (1, 3 or 5)? [VERBATIM; REQUIRED NUMERIC] [Answer = 30]
[Correct = 15.14%]

-------------------------------End Web pg-------------------------------

[SHOW ONLY IF choir = 25]
sixside: Imagine we are throwing a loaded die (6 sides). The probability that the die shows a 6 is twice as high as the probability of each of the other numbers. On average, out of 70 throws how many times would the die show the number 6? [VERBATIM; REQUIRED NUMERIC] [Answer = 20] [Correct = 5.69%]

-------------------------------End Web Pg-------------------------------

[SHOW ONLY IF sixside ≠ 20]
mushroom: In a forest, 20% of the mushrooms are red, 50% are brown, and 30% are white. A red mushroom is poisonous with a probability of 20%. A mushroom that is not red is poisonous with a probability of 5%. What is the probability that a poisonous mushroom in the forest is red? Please indicate the probability as a percent. [VERBATIM; REQUIRED NUMERIC] percent [Answer = 50] [Correct = 1.76%]

-------------------------------End Web pg-------------------------------

The National Weather Service Storm Prediction Center uses the following phrases to describe the risk of severe thunderstorms and tornadoes. We want to know what these phrases mean to you. Can you rank them from one (lowest risk) to five (highest risk)? [RANDOM ORDER, DROPDOWN LIST WITH 1 to 5]

spc_mar: Marginal Risk
1- lowest risk [29.08%]
2 - [34.58%]
3 - [15.19%]
4 - [13.05%]
5 - highest risk [8.10%]

spc_sli: Slight Risk
1- lowest risk [44.15%]
2 - [28.31%]
3 - [8.04%]
4 - [8.41%]
5 - highest risk [11.11%]

spc_enh: Enhanced Risk
1- lowest risk [8.32%]
2 - [16.41%]
3 - [21.03%]
4 - [38.99%]
5 - highest risk [15.25%]

spc_mod: Moderate Risk
1- lowest risk [5.52%]
2 - [14.64%]
3 - [50.53%]
4 - [25.49%]
5 - highest risk [3.81%]

spc_hig: High Risk
1- lowest risk [12.93%]
2 - [6.05%]
3 - [5.21%]
4 - [14.07%]
5 - highest risk [61.73%]
The Storm Prediction Center also uses colors to describe the risk of severe thunderstorms and tornadoes. We want to know what these colors mean to you. Can you rank these colors from one (lowest risk) to five (highest risk)? [RANDOM ORDER COLOR BOXES, DROPDOWN LIST WITH 1 to 5]

spc_mar_col: BOX [color code: #00B050]
1 - lowest risk [56.70%]
2 - [13.71%]
3 - [11.54%]
4 - [9.89%]
5 - highest risk [8.15%]

spc_sli_col: BOX [color code: #FFFF00]
1 - lowest risk [13.94%]
2 - [41.09%]
3 - [26.90%]
4 - [13.30%]
5 - highest risk [4.77%]

spc_enh_col: BOX [color code: #FFA329]
1 - lowest risk [7.40%]
2 - [20.46%]
3 - [40.86%]
4 - [26.75%]
5 - highest risk [4.54%]

spc_mod_col: BOX [color code: #FF0000]
1 - lowest risk [11.16%]
2 - [3.91%]
3 - [3.88%]
4 - [17.70%]
5 - highest risk [63.35%]

spc_hig_col: BOX [color code: #FF00FF]
1 - lowest risk [10.80%]
2 - [20.83%]
3 - [16.82%]
4 - [32.37%]
5 - highest risk [19.18%]

------------------------End Web pg ----------------------

The survey is nearly complete. We have just a few more questions. [RANDOM ORDER IN TABLE]

rq_1: Does your local government have an emergency or disaster plan for your community?
0 – No [18.42%]
1 – Yes [42.07%]
2 – Not sure [39.50%]

rq_2: Do you know how to find the emergency broadcasting channel on the radio?
0 – No [43.07%]
1 – Yes [41.26%]
2 – Not sure [15.67%]

rq_3: In the past 30 days, have you seen or heard any messages that encourage people to take steps to be prepared for emergency situations in your community?
0 – No [52.75%]
rq_4: In the last year, have you prepared a Disaster Supply Kit with emergency supplies like water, food and medicine that is kept in a designated place in your home?
0 – No [62.14%]
1 – Yes [30.14%]
2 – Not sure [7.72%]

rq_5: In the last year, have you prepared a small kit with emergency supplies that you keep at home, in your car or where you work to take with you if you had to leave quickly?
0 – No [58.12%]
1 – Yes [34.43%]
2 – Not sure [7.45%]

rq_6: In the last year, have you made a specific plan for how you and your family would communicate in an emergency situation if you were separated?
0 – No [57.74%]
1 – Yes [33.78%]
2 – Not sure [8.48%]

rq_7: In the last year, have you established a specific meeting place to reunite in the event you and your family cannot return home or are evacuated?
0 – No [65.70%]
1 – Yes [26.81%]
2 – Not sure [7.49%]

rq_8: In the last year, have you practiced or drilled on what to do in an emergency at home?
0 – No [67.38%]
1 – Yes [25.33%]
2 – Not sure [7.30%]

rq_9: In the last year, have you volunteered to help prepare for or respond to a major emergency?
0 – No [76.81%]
1 – Yes [16.38%]
2 – Not sure [6.82%]

rq_10: Have you taken first aid training such as CPR in the past five years?
0 – No [62.69%]
1 – Yes [30.79%]
2 – Not sure [6.52%]

------------------------End Web pg----------------------

income: Was the estimated annual income for your household in 2018:
1 - Less than $50,000 [go to inc50] [38.63%]
2 - At least $50,000 but less than $100,000 [go to inc100] [32.59%]
3 - At least $100,000 but less than $150,000 [go to inc150] [17.11%]
4 - $150,000 or more [go to inc200] [11.67%]

------------------------End Web pg----------------------

inc_50: Was the estimated annual income for your household in 2018:
1 - Less than $10,000 [18.85%]
2 - $10,000 to less than $20,000 [21.56%]
3 - $20,000 to less than $30,000 [25.09%]

------------------------End Web pg----------------------
4 - $30,000 to less than $40,000 [18.49%]
5 - $40,000 to less than $50,000 [16.01%]

inc_100: Was the estimated annual income for your household in 2018:
6 - $50,000 to less than $60,000 [24.99%]
7 - $60,000 to less than $70,000 [24.52%]
8 - $70,000 to less than $80,000 [23.59%]
9 - $80,000 to less than $90,000 [15.32%]
10 - $90,000 to less than $100,000 [11.59%]

inc_150: Was the estimated annual income for your household in 2018:
11 - $100,000 to less than $110,000 [24.22%]
12 - $110,000 to less than $120,000 [20.42%]
13 - $120,000 to less than $130,000 [24.48%]
14 - $130,000 to less than $140,000 [15.70%]
15 - $140,000 to less than $150,000 [15.18%]

inc_200: Was the estimated annual income for your household in 2018:
16 - $150,000 to less than $160,000 [15.28%]
17 - $160,000 to less than $170,000 [6.23%]
18 - $170,000 to less than $180,000 [10.50%]
19 - $180,000 to less than $190,000 [8.96%]
20 - $190,000 to less than $200,000 [15.35%]
21 - $200,000 or more [43.69%]

edu: What is the highest level of education you have COMPLETED?
1 - Less than high school [1.87%]
2 - High school / GED [16.72%]
3 - Vocational or Technical Training [4.03%]
4 - Some College; NO degree [20.33%]
5 - 2-year College / Associate’s degree [10.32%]
6 - Bachelor’s Degree [28.77%]
7 - Master’s Degree [13.97%]
8 - PhD / JD (Law) / MD [3.98%]

oft_twit: About how often do you use Twitter?
0 – Never [57.58%]
1- Less than once a month [9.12%]
2 - Several times a month [4.09%]
3 - About once a week [6.55%]
4 - Several times a week [5.91%]
5 - Once or twice most days [7.19%]
6 - Several times almost every day [9.56%]

oft_FB: About how often do you use Facebook?
0 – Never [21.16%]
Research shows that information can influence the way that people answer survey questions. We would like to know if you generally read the information that comes before survey questions. To demonstrate that you have read this text, please ignore the question below and click on the blue dot.

ign_instruct: Which of the following devices do you typically use to answer surveys on the Internet?
1 - A computer [49.65%]
2 - A tablet (such as an iPad) [11.67%]
3 - A smart phone (such as an Android or iPhone) [38.68%]

is_bluedot: Clicked on the blue dot [13.71%]

comments: Is there anything else that you would like us to know about how you receive, understand, or respond to information from the National Weather Service? [VERBATIM]